Education Experiences:
2010.08-2014.05, Tulane University, PhD;
2007.09-2010.07, Beijing Normal University, Master;
2003.09-2007.07, Northwest Normal University, Bachelor.
Working Experiences:
2022.09-present, Professor at RUC;
2016.09-2022.08, Associate professor at RUC;
2014.10-2016.08, Postdoctoral at RUC;
Research Areas:
Partial Differential Equations; Mathematical Biology; Nonlinear Analysis; Dynamical Systems.
Courses:
Mathematical Analysis I, II & III, Partial Differential Equations, Real Analysis, Functional Analysis, etc.
Papers:
1. H. Li and T. Xiang, On an SIS epidemic model with power-like nonlinear incidence and with/without cross-diffusion, Studies in Appl. Math., 77 (2024), 1-46.
2. J. Chu, H. Jin and T. Xiang, Global dynamics in a chemotaxis model describing tumor angiogenesis with/without mitosis in any dimension. Commun. Math. Sci. 21 (2023), no. 4, 1055–1095.
3. D. Feng and T. Xiang, Boundedness and asymptotic stabilization in a two-dimensional Keller-Segel-Navier-Stokes system with sub-logistic source. Math. Models Methods Appl. Sci. 32 (2022), no. 11, 2237–2294
4. T. Xiang, Finite time blow-up in the higher dimensional parabolic-elliptic-ODE minimal chemotaxis-haptotaxis system. J. Differential Equations336 (2022), 44–72.
5. H. Jin and T. Xiang, Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model, Math. Models Methods Appl. Sci. 31 (2021), no. 7, 1373–1417.
6. K. Lin and T. Xiang, On boundedness, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop. Calc. Var. Partial Differential Equations 59 (2020), no. 4, Paper No. 108, 35 pp.
7. T. Xiang and D. Zhu, Cone expansion and cone compression fixed point theorems for sum of two operators and their applications. J. Fixed Point Theory Appl. 22 (2020), no. 2, Paper No. 49, 24 pp.
8. H. Li, R. Peng and T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion, European J. Appl. Math. 31 (2020), no. 1, 26–56.
9. T. Xiang and J. Zheng, A new result for 2D boundedness of solutions to a chemotaxis--haptotaxis model with/without sub-logistic source, . Nonlinearity 32 (2019), 4890–4911.
10. K.Lin and T. Xiang, On global solutions and blow-up for a short-ranged chemical signaling loop. J. Nonlinear Sci. 29 (2019), no. 2, 551–591.
11. T. Xiang, Chemotactic aggregation versus logistic damping on boundedness in the 3D minimal Keller-Segel model, SIAM J. Appl. Math. 78(2018), 2420-2438.
12. T. Xiang, Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system, J. Math. Phys. 59 (2018) no, 8, 081502, 11 pp.
13. T. Xiang, How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system? J. Math. Anal. Appl. 459(2018), 1172–1200.
14. T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl. 39(2018), 278–299.
15. H. Jin and T. Xiang, Boundedness and exponential convergence in a chemotaxis model for tumor invasion, Nonlinearity, 29 (2016) , 3579–3596.
16. T. Xiang, On a class of Keller-Segel chemotaxis systems with cross-diffusion, J. Differential Equations 259 (2015), 4273–4326.
17. T. Xiang, Boundedness and global existence in the higher dimensional parabolic parabolic chemotaxis system with/without growth source, J. Differential Equations 258 (2015), 4275–4323.
Services & Awards:
AMS Reviewer, Journal Referee for JDE, DCDS, JMAA, SAM etc,
Postdoctoral Fund, NSFC for Youth and NSFC in general.